Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Conformational switching caused by biphenyl substitution at the $\mathrm{C}^{\boldsymbol{\alpha}}$ position: ethyl 2-benzyl-2-(formyl-amino)-3-phenylpropionate and ethyl 3-(1,1'-biphenyl-4-yl)-2-(formylamino)-2-(4-phenylbenzyl)propionate

Lakshminarasimhan Damodharan, ${ }^{\text {a }}$ Vasantha Pattabhi, ${ }^{\text {a* }}$ Manoranjan Behera ${ }^{\text {b }}$ and Sambasivarao Kotha ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {b }}$ Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India
Correspondence e-mail: pvasantha@hotmail.com

Received 4 May 2004
Accepted 1 June 2004
Online 30 June 2004

The title compounds, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$ and $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{3}$, are derivatives of α-aminoisobutyric acid, with benzyl and dibenzyl substitution. The pseudo-peptide formed by the N-formyl and ethyl ester substitution at the C^{α} position switches from a trans-trans to a trans-cis configuration as a result of biphenyl substitution. The packing of the compounds is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

α-Aminoisobutyric acid (Aib), which is achiral, has well established structural effects (Karle et al., 1994; Ramesh \& Balaram, 1999; Formaggio et al., 2000). Similarly, benzyl substitution at the C^{α} position provides rigidity to the peptide backbone, and this conformational restriction is useful

(I)

(II)
in peptide motif design (Studer \& Seebach, 1995; Damodharan et al., 2002; Karle \& Balaram, 1990; Polese et al., 1996;

Kotha \& Brahmachary, 2000). The effects of benzyl and phenyl substitution at the C^{α} position of Aib have been studied via crystal structure analyses. The two title compounds, (I), and (II), crystallize in the same $\left(P 2_{1} / c\right)$ space group from n-propanol-methanol (1:1) and 2-propanol solutions, respectively.

(a)

(b)

Figure 1
The molecular structures of (a) (I) and (b) (II), showing 50\% probability displacement ellipsoids and the atomic numbering schemes.

The molecular structures of the title compounds are shown in Fig. 1. Terminal atoms C18 and C17 of the ethyl ester side chains of (I) exhibit disorder. The bond angles at atoms C2 and C 9 of (I), and at C2 and C15 of (II), are significantly larger than normal tetrahedral values because of the presence of the bulky substitutions [115.4 (2) ${ }^{\circ}$ at C 2 and 115.8 (3) ${ }^{\circ}$ at C 9 in (I), and 115.9 (2) $)^{\circ}$ at C 2 and 116.4 (2) ${ }^{\circ}$ at C 15 in (II)]. The angles between benzene rings A and B are 61.4 (2) and 61.8 (1) ${ }^{\circ}$ in (I) and (II), respectively; the angle between rings A and C in (II) is 18.1 (1) ${ }^{\circ}$, and that between rings B and D in (II) is 39.8 (2) ${ }^{\circ}$. The additional phenyl substitution causes the molecules to be arranged along the longest axis (viz. the a axis) in (II), and a herring-bone packing arrangement is seen in both structures.

The N-formyl and ethyl ester chains form a pseudo-peptide, the backbone of which adopts a trans-trans conformation in

Figure 2
A stereoview of the superposition of (I) (black) and (II) (grey), showing the conformational switching of the ethyl ester chain from trans-trans in (I) to cis-trans in (II).

Figure 3
A stereoview of the packing of (I), showing intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Figure 4
A stereoview of the packing of (II), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions.
(I) $\left[\mathrm{C} 16-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 19(\varphi)=-178.8(3)^{\circ}, \mathrm{O} 17 A-\mathrm{C} 16-\right.$ $\mathrm{C} 1-\mathrm{N} 1(\psi)=170.5(5)^{\circ}$ and $\mathrm{O} 17 B-\mathrm{C} 16-\mathrm{C} 1-\mathrm{N} 1(\psi)=$ $-169.8(7)^{\circ}$; as a result of disorder, ψ adopt two values] and a trans-cis conformation in (II) [C28-C1-N31-C32 $(\varphi)=$ $178.4(2)^{\circ}$ and $\mathrm{N} 31-\mathrm{C} 1-\mathrm{C} 28-\mathrm{O} 29(\psi)=-5.4(3)^{\circ}$; Fig. 2]. This conformational switching may be due to the additional phenyl ring substitutions on either side of the C^{α} atom.

The N-formyl side chain is planar and in a folded conformation in both compounds $\left[\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 19-\mathrm{O} 19=-4.4(5)^{\circ}\right.$ and $\mathrm{C} 1-\mathrm{N} 31-\mathrm{C} 32-\mathrm{O} 33=0.7$ (4) ${ }^{\circ}$ for (I) and (II), respectively]. The ethyl ester side chains adopt different conformations in the two compounds, viz. $-a p$ (antiperiplanar) and $+s c$ (synclinal) in (I), and $+a c$ (anticlinal) in (II) [C16-O17A$\mathrm{C} 17 A-\mathrm{C} 18 A=-171.9(10)^{\circ} \quad(-a p)$ and $\mathrm{C} 16-\mathrm{O} 17 B-$ $\mathrm{C} 17 B-\mathrm{C} 18 B=82(2)^{\circ}(+s c)$ in (I) (two conformations as a result of the disorder), and $\mathrm{C} 28-\mathrm{O} 29-\mathrm{C} 29-\mathrm{C} 30=93.8(4)^{\circ}$ $(+a c)$ in (II)]. The switch from $-a p /+s c$ to $+a p$ can be attributed to the biphenyl substitutions (Fig. 3).

Intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are present in both structures. The $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 16$ angle is $105.0(2)^{\circ}$, possibly as a result of the presence of an intramolecular $\mathrm{N} 1-\mathrm{H} \cdots \mathrm{O} 16$ hydrogen bond, whereas the corresponding angle ($\mathrm{N} 31-\mathrm{C} 1-\mathrm{C} 28$) in (II) is 110.2 (2) ${ }^{\circ}$ (Fig. 4). The bifurcated $\mathrm{N} 31-\mathrm{H} 31 \cdots \mathrm{O} 29(x, y, z) / \mathrm{O} 33\left(x, \frac{3}{2}-y, z-\frac{1}{2}\right)$ hydrogen bond may be the reason for the widening of this bond angle.

The packing of both structures is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions. Atom O 19 of the N -formyl group in (I) forms an intermolecular C5-H5 . .O19 hydrogen bond, which is replaced by an $\mathrm{N} 31-\mathrm{H} 31 \cdots \mathrm{O} 33$ hydrogen bond in (II) (Tables 1 and 2, and Figs. 3 and 4).

Experimental

Reaction of benzyl bromide, (1), with ethyl isocyanoacetate in the presence of a phase-transfer catalyst, such as tetrabutylammonium sulfate, in acetonitrile/potassium carbonate gave a coupling product.

Hydrolysis of the coupling product with concentrated HCl in the presence of diethyl ether gave the formyl derivative (I).

(i) cthyl isocyanoacctate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$
(ii) conc. HCl , diethyl ether

Similarly, compound (4) was prepared from p-iodobenzyl bromide, (3). A Suzuki-Miyaura coupling reaction (Kotha et al., 2002) of (4) with benzeneboronic acid in the presence of Pd^{0} as catalyst gave the cross-coupling product (II).

(3)

(II)
(i) ethyl isocyanoacetate, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, (ii) conc. HCl , diethyl cther (iii) $\mathrm{Ph}-\mathrm{B}(\mathrm{OH})_{2}, \mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{4}}$

Compound (I)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}$
$M_{r}=311.37$
Monoclinic, $P 2_{1} / c$
$a=9.980(2) \AA$
$b=11.853(3) \AA$
$c=14.575(4) \AA$
$\beta=94.147(4)^{\circ}$
$V=1719.6(7) \AA^{3}$
$Z=4$
$D_{x}=1.203 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector	$R_{\text {int }}=0.023$
\quad diffractometer	$\theta_{\max }=27.9^{\circ}$
ω scans	$h=-12 \rightarrow 12$
13797 measured reflections	$k=-13 \rightarrow 15$
3802 independent reflections	$l=-18 \rightarrow 19$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.161$
$S=1.05$
3802 reflections
245 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0598 P)^{2} \\
&+0.3098 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.11 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ($\AA^{\circ},{ }^{\circ}$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{O} 16 A$	0.86	2.22	$2.657(15)$	111
N1-H1 O16B	0.86	2.11	$2.55(2)$	111
C5-H5 OO19	0.93	2.46	$3.314(3)$	152
C2-H2B \cdots O19	0.97	2.57	$3.168(3)$	119
C9-H9A OO19	0.97	2.64	$3.170(3)$	114

Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.

Compound (II)

Crystal data
$\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NO}_{3}$
$M_{r}=463.55$
Mo $K \alpha$ radiation
Monoclinic, $P 2_{1} / c$
$a=26.761$ (5) \AA 。
Cell parameters from 5898
reflections
$b=10.9424(19) \AA$
$\theta=2.0-28.0^{\circ}$
$c=8.5818(15) \AA$
$\mu=0.08 \mathrm{~mm}^{-1}$
$\beta=95.068(3)^{\circ}$
$T=293$ (2) K
$\beta=95.068(3)$
$V=2503.2(8) \AA^{3}$
Rectangular block, colorless
$Z=4$
$D_{x}=1.230 \mathrm{Mg} \mathrm{m}^{-3}$
$0.54 \times 0.45 \times 0.45 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector	$R_{\text {int }}=0.052$
\quad diffractometer	$\theta_{\max }=28.0^{\circ}$
ω scans	$h=-34 \rightarrow 34$
21471 measured reflections	$k=-14 \rightarrow 14$
5898 independent reflections	$l=-11 \rightarrow 10$

2853 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}^{2}\right)+(0.0465 P)^{2} \\
&+0.6112 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.161$
$S=1.05$
5898 reflections
316 parameters
H -atom parameters constrained

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N31-H31 \cdots O29	0.86	2.12	$2.556(2)$	111
N31-H31 ${ }^{\text {Oii }}$	0.86	2.21	$2.936(3)$	142
C15-H15B \cdots O33	0.97	2.49	$3.137(3)$	124
C2-H2A \cdots O33	0.97	2.55	$3.139(3)$	119

Symmetry code: (ii) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

H atoms were positioned geometrically and treated as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$.

For both compounds, data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors thank the Council of Scientific and Industrial Research, and the Department of Science and Technology, India, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1665). Services for accessing these data are described at the back of the journal.

References

Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Damodharan, L., Shamaladevi, N., Pattabhi, V., Behera, M. \& Kotha, S. (2002). Acta Cryst. C58, o266-o267.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Formaggio, F., Crisma, M., Rossi, P., Scrimin, P., Kaptein, B., Broxterman, Q. B., Kamphuis, J. \& Toniolo, C. (2000). Chem. Eur. J. 6, 4498-4504.

Karle, I. L., Balaji Rao, R., Prasad, S., Kaul, R. \& Balaram, P. (1994). J. Am. Chem. Soc. 116, 10355-10361.
Karle, I. L. \& Balaram, P. (1990). Biochemistry, 29, 6747-6756.
Kotha, S. \& Brahmachary, E. (2000). J. Org. Chem. 65, 1359-1365.
Kotha, S., Lahiri, K. \& Kashinath, D. (2002). Tetrahedron, 58, 9633-9695.
Polese, A., Formaggio, F., Crisma, M., Valle, G., Toniolo, C., Bonora, G. M., Broxterman, Q. B. \& Kamphuis, J. (1996). Chem. Eur. J. 2, 1104-1111.
Ramesh, K. \& Balaram, P. (1999). Bioorg. Med. Chem. 7, 105-107.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Studer, A. \& Seebach, D. (1995). Liebigs Ann. Chem. pp. 217-222.

